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Abstract

We characterize the sharing rule for which a contribution mechanism achieves

e¢ ciency in a cooperative production setting when agents are heterogeneous. This

rule di¤ers from the one obtained by Sen for the case of identical agents. We

also show for a large class of sharing rules that if Nash equilibrium yields e¢ cient

allocations, the production function displays constant returns to scale, a case in

which cooperation in production is useless.
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1. Introduction

The Cooperative Production problem arises when n agents use a commonly owned tech-

nology to transform inputs into outputs. Output is distributed by means of a sharing

rule, a function yielding consumption of each agent as a function of inputs. In this

model, the literature has considered both adverse selection and moral hazard problems.

In this paper we focus on adverse selection.1 In this setting, preferences cannot be

used by the planner to achieve the allocations she wants because either preferences are

unknown to her or they are not contractible, i.e. nobody can be convicted on the count

of falsifying her own preferences. Thus, the planner cannot achieve directly e¢ cient

allocations, so she has to construct a mechanism whose non-cooperative outcomes yield

the desired allocations. Corchón and Puy (2002) proved that, for any continuous shar-

ing rule, there is a mechanism whose Nash equilibria yield allocations that are Pareto

e¢ cient and where agents receive consumptions dictated by the sharing rule.2 How-

ever, the implementing mechanism is complicated so we examine the performance of

a natural mechanism in which each agent decides her own input contribution and re-

ceives the consumption dictated by the sharing rule. We refer to this mechanism as a

contribution mechanism. Holmstrom (1982) and Fabella (1988) showed in two special

cases that such a mechanism does not yield e¢ cient allocations as Nash Equilibria.3

Sen (1966) showed that a particular mix of the egalitarian and the proportional sharing

rules achieves e¢ ciency when all agents are identical. However, when agents are not

identical and inputs are heterogeneous, Browning (1983) showed that the contribution

mechanism described above achieves e¢ ciency only when the production function ful�lls

1For moral hazard problems see Holmstrom (1982) and Nandeibam (2003).
2They also show that in "classical" economies these allocations exist.
3Both assume utility functions quasi-linear in consumption. Holmstrom considers sharing rules which

depend on aggregate output and Fabella considers the proportional sharing rule. The motivation of the

assumption in Holmstrom is moral hazard but his result can be cast in terms of adverse selection too.
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a separability property.

In this paper we delve into the kind of sharing rules for which the contribution mech-

anism achieves e¢ ciency when the domain of admissible preferences is large enough and

inputs are homogeneous. We show that the contribution mechanism achieves e¢ ciency

only when the production function is a polynomial of, at most, degree n� 1 (Theorem

1). This is a generalization of a result by Gradstein (1995) in the framework of Cournot

oligopoly model. We also characterize the anonymous sharing rule for which the con-

tribution mechanism yields e¢ cient allocations (Theorem 2). We call this rule the

Incremental Sharing Rule. This rule has two parts. One part awards each agent with

her marginal product as it happens with the celebrated Vickrey-Clark-Groves (VCG)

mechanisms. The other part is composed by terms that depend on the contributions

of other agents. These terms are chosen such that when the production function is

a polynomial of, at most, degree n-1 the incremental sharing rule delivers as much

consumption as output. Contrarily to VCG mechanisms the incremental sharing rule

yields e¢ cient allocations as Nash equilibrium -not as a dominant strategy equilibrium.

It works for a large pro�le of preferences -not only for quasi-linear ones, and requires a

polynomial form of the production function not of the utility functions (see for example

Liu and Tian [1999] p. 213).

Finally, we replace the anonymity requirement on the sharing rule by one of the

following properties: the consumption of any agent either depends on her own labor

contribution and the total labor supply, or is zero when the labor supply of this agent is

zero. In those cases, e¢ ciency can only be achieved if the production function displays

constant returns to scale (Proposition 1). But this is a case where cooperation does not

make much sense because it is like if every agent had access to her own technology and

would keep the whole output produced using her own technology. Thus, implementation

of these sharing rules requires a di¤erent mechanism from the one considered here,

possibly, a complex one. This implies that Sen´s result is an artifact of his assumption
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that agents are identical.

This paper is closely related to a paper by Moulin (2007) who independently provided

a similar characterization of the incremental sharing rule (the residual� mechanism as

Moulin called it) in the context of cost sharing. Formally neither of the results implies

another because the two games are not the same. In our case it is a contribution game

associated to an output sharing problem and in his case it is a demand game associated

to a cost-sharing game. Leroux (2008) has proved that these two games are di¤erent.
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2. The Model and the Results

We have n agents that supply labor denoted by li, i 2 N = f1; 2; ::::ng. Let l �

(l1; l2; :::; ln); l�i � (l1; :::; li�1; li+1; :::; ln); L �
Pn
j=1 lj , L�i �

P
j 6=i lj , L�ik =P

j 6=i;j 6=k lj ; L�ikm =
P
j 6=i;j 6=k;j 6=m lj , and so on. There is a maximum quantity of

labor that any agent can supply, l.

Agents share a technology that is able to generate a consumption good whose pro-

duction function is written as X(L): It is assumed to be concave, increasing and di¤er-

entiable in [0; nl] with X(0) = 0: The production function displays Constant Returns

to Scale if X(L) = aL, a > 0.

Let xi be the consumption of i and x � (x1; x2; :::; xn). The pair (x; l) is an allocation.

An allocation (x; l) is feasible if
Pn
i=1 xi = X(L) and 0 � li � l; i 2 N . The set of

feasible allocations is denoted by A.

Each agent, say i, has preferences over consumption and labor representable by a

concave and di¤erentiable utility function Ui = Ui(xi; li) which is strictly increasing

(resp. decreasing) in the �rst (second) argument.

E¢ cient allocations are found by

max

nX
i=1

�iUi(xi; li) with (x; l) 2 A (2.1)

for given (�1; �2; :::; �n) with �i � 0 and
Pn
i=1 �i = 1. This is the maximization of a

continuous function over a compact set and, hence, it has a solution by Weierestrass

theorem. The program is concave and thus �rst order conditions gives the maximum.

Assuming that �rst order conditions hold with equality, we have that

@Ui(xi; li)

@xi

dX(L)

dL
+
@Ui(xi; li)

@li
= 0; i 2 N . (2.2)

Let us remark that �rst order conditions may hold with equality at points where li = 0.

A Sharing Rule speci�es the consumption allocated to each agent as a function of
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labor inputs. Formally, a sharing rule, x(�); is a collection of di¤erentiable functions

(x1(�); x2(�); ::::; xn(�)) with xi : <n+ ! <+, i 2 N; such that
Pn
j=1 xj(l) = X(L),

8l 2 [0; �l]n. Two well-known examples of sharing rules are:

xPi (l) =
liPn
j=1 lj

X(L); for all i 2 N (Proportional)

xEi (l) =
1

n
X(L); for all i 2 N (Equal Sharing)

Assume that a planner wants to achieve e¢ cient allocations but she cannot observe

preferences. The planner can observe the technology and chooses the sharing rule.

The planner has to rely on a mechanism whose non-cooperative outcomes yield the de-

sired allocations. The mechanism consists in a message space and an outcome function

mapping messages into feasible allocations. In this paper we focus on a contribution

mechanism in which the message (strategy) of each agent is her proposed labor contri-

bution, a point in [0; l]. The outcome function is such that the labor contribution of

each agent is her proposed labor contribution and the consumption is given by a sharing

rule. Abusing language we will speak of the mechanism as the sharing rule. The payo¤

functions induced by the mechanism are Ui(xi(l); li); i 2 N: A Nash equilibrium of this

mechanism is a vector of strategies (l�) such that

Ui(xi(l
�); l�i ) � Ui(xi(l�1; ::; li; ::; l�n); li) for all li 2 [0; l]; i 2 N:

We will refer to (l�) as a Nash equilibrium associated to the sharing rule x(�) =

(x1(�); x2(�); ::::; xn(�)), or as a Nash equilibrium in short.

Assuming that �rst order conditions of a Nash equilibrium hold with equality,

@Ui(xi; li)

@xi

@xi(l)

@li
+
@Ui(xi; li)

@li
= 0; i 2 N: (2.3)

Let us again remark here that �rst order conditions may hold with equality at points

where li = 0:
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It is clear that a sharing rule may yield e¢ cient allocations as Nash equilibria for

some preferences. But it would be desirable to have a sharing rule whose good perfor-

mance does not depend on being applied to speci�c preferences. In fact, if preferences

can be chosen adequately, e¢ cient outcomes can be achieved not only as Nash equilibria

but as equilibria in dominant strategies (see Groves and Loeb [1975] or Liu and Tian

[1999]).

Let us de�ne an economy, denoted by U � (U1(); U2(); ::::; Un()), as a list of utility

functions. Let E be the set of all admissible economies. We assume that the set of

admissible economies is large in the following sense:

Assumption D. The set of admissible economies E contains all economies where utility

functions are of the following form:

Ui(xi; li) = xi � �ili �
�il

2
i

2
; �i; �i � 0; 8i 2 N: (2.4)

Assumption D is weaker than the assumption that the domain of possible preferences is

the set of all continuous, strictly increasing, and concave utility functions.4 To explore

the implications of Assumption D in the set of e¢ cient allocations we introduce the

following notation. Let 'E(U) be the set of e¢ cient allocations in U . De�ne,

R = f(l j 9U 2 E ; (x(l); l) 2 'E(U)g:

In words, R is the set of input allocations that, given a sharing rule x(�), yield e¢ cient

allocations for some economy. We refer to l as the e¢ cient input allocation. De�ne,

Ri(l�i) = fli j 9U 2 E ; (x(li; l�i); (li; l�i) 2 'E(U)g:

In words, Ri(l�i) is the set of input contributions for i, li; such that (li; l�i) is an e¢ cient

input allocation for some economy.
4This assumption is made in the literature characterizing strategy-proof mechanisms, see Moulin

(1994, pp. 308-9), Serizawa (1996, pp. 503-8), Osheto (1997, p. 160), Deb and Ohseto (1999, p. 686)

and Serizawa (1999, p. 124).
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It is easy to see that Assumption D implies the following properties:

Ri(l�i) is the interval [0; �l], 8i 2 N , 8l�i 2 Rn�1+ ; (LD)

8l 2 [0; �l]n;9U 2 E such that l is the unique e¢ cient input allocation for U . (U)

For instance, let Ui(xi; li) = xi � �il2i =2 with �i > 0. In this case, there is a unique

e¢ cient input allocation, say l̂ >> 0. Moreover any l̂ >> 0 can be sustained as the

unique e¢ cient input allocation of an economy U of the form (2.4) by setting �i = 0

for all i 2 N; and ��s such that

dX(L̂)

dL
= �i l̂i; for all i 2 N; where L̂ =

X
i2N

l̂i: (2.5)

Since the second order conditions of (2.5) hold, the allocation above is e¢ cient. Alloca-

tions in which some agents exert zero e¤ort, �l , can be sustained as the unique e¢ cient

input allocation of an economy U of the form (2.4) by setting:

dX(�L)

dL
= �i, �i = 0 for all i 2 N such that �li = 0; and

dX(�L)

dL
= �j

�lj ; �j = 0 for all j 2 N such that �lj 6= 0;

where �L =
X
i2N

�li:

Notice that at these boundary input allocations, �rst order conditions hold with equality.

An important implication of properties LD and U is that if we require that for any

U in the domain any Nash equilibrium is e¢ cient, all the input allocations in [0; �l]n are

Nash equilibria for some U in the domain.

Our �rst result establishes that only if the production function is a polynomial of,

at most, degree (n � 1); Nash equilibrium yields e¢ cient allocations for any economy

in the domain. The proof is an adaptation of a result from Gradstein (1995) in the

framework of the Cournot oligopoly model (a special case of the model considered in
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this paper).

Theorem 1. Under Assumption D, if Nash equilibrium yields e¢ cient allocations in

any U 2 E , the production function is a polynomial of, at most, degree (n� 1):

Proof. Take any U 2 E and consider a Pareto e¢ cient allocation (x(l�); l�) such that

l� is a Nash equilibrium. Thus, from (2.2) and (2.3),

@xi(l
�)

@li
=
dX(

Pn
j=1 l

�
j )

dL
; 8i 2 N . (2.6)

The above equation holds in the interval Ri(l��i): Integrating on [0; li] we get

xi(li; l
�
�i) = X(li +

X
j 6=i

l�j )�Qi, 8li 2 Ri(l��i); 8i 2 N , (2.7)

where Qi depends on l��i: Since the above equation holds for all lj 2 Rj(l�j); 8j 6= i;

xi(l) � X(
nX
j=1

lj)�Qi(l�i); 8(li; l�i) 2 R; 8i 2 N . (2.8)

Adding over i and considering feasibility we obtain

(n� 1)X(
nX
j=1

lj) �
nX
j=1

Qj(l�j); 8l 2 R: (2.9)

(see Browning (1983)). Consider now all the possible vectors with one component

equal to zero. For each of these vectors we apply equation (2.9) and we subtract the

resulting equations from equation (2.9). We do the same for all possible vectors with

two components equal to zero and we add the equations to the result of the previous

step. We proceed in this way subtracting from the previous step the equation resulting

from considering all possible vectors with an odd number of components equal to zero

and adding the equations resulting from considering all possible vectors with an even

number of components equal to zero. As a result of these operations we get the following

functional equation:

X(L)�
nX
k=1

X(L�k) +
X
k<t

X(L�kt)�
X

k<t<m

X(L�ktm) + :::+ (�1)n�1
nX
j=1

X(lj) = 0:

(2.10)
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The solution of (2.10) is a polynomial of, at most, degree (n � 1) (Aczel (1966) pp.

129-130).

An implication of the previous Theorem is that when n = 2 and the production

function is strictly concave, Nash equilibrium cannot be e¢ cient in all economies in E

because e¢ ciency will require that the production function displays constant returns to

scale.

In what follows we show that if the production function is a polynomial of degree, at

most, (n� 1); there is a contribution mechanism whose Nash equilibria are e¢ cient for

all economies in the domain. This mechanism is the one associated to the incremental

sharing rule formally de�ned as follows:

De�nition 1. Let the production function be a polynomial of, at most, degree (n�1):

The incremental sharing rule is de�ned as:

xIi (l) = X(L)�(n�1)X(L�i)+
n� 1
2

X
k 6=i

X(L�ik)�
n� 1
3

X
k;h 6=i;k<h

X(L�ikh)+::+(�1)n�1
X
j 6=i

X(lj):

(2.11)

This sharing rule awards each agent the whole output minus a measure of the contribu-

tions of others.

The name Incremental Sharing Rule is suggested by the fact that

xIi (l)� xIi (0; l�i) = X(L)�X(L�i): (2.12)

The incremental sharing rule, despite the complex analytical form is really simple. It

demands the equalization between private gain in consumption of i and public gain in

aggregate output for each variation of the labor supplied by i. When n = 3 and n = 4
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the incremental sharing rule looks as follows:

xIi (l) = X(L)� 2X(L�i) +
X
j 6=i

X(lj); and (2.13)

xIi (l) = X(L)� 3X(L�i) +
3

2

X
k 6=i

X(L�ik)�
X
j 6=i

X(lj): (2.14)

We remark that the incremental sharing rule is well-de�ned only when X(�) is a poly-

nomial of, at most, degree (n� 1): Indeed adding (2.11) over i, we obtain

nX(L) + (n� 1)

0@� nX
k=1

X(L�k) +
X
k<t

X(L�kt) + :::+ (�1)n�1
nX
j=1

X(lj)

1A : (2.15)

which equals output X(L) when X(�) is a polynomial of, at most, degree (n � 1) as

shown at the end of Theorem 1.

The next result characterizes the incremental sharing rule as the unique anonymous

sharing rule under which Nash equilibrium yields e¢ cient allocations.

Theorem 2. Let X(�) be a polynomial of, at most, degree (n� 1). All Nash equilibria

associated with an anonymous sharing rule are e¢ cient if and only if the sharing rule

is the incremental sharing rule.

Proof. Suppose that Nash equilibrium are e¢ cient. Then, as we have shown in

Theorem 1, the sharing rule should satisfy (2.8). Given l; for each agent i; we can

�nd Qi(l�i) applying equation (2.9) successively to X(L�i); X(L�ik) for all possible k

di¤erent from i; X(L�ikh) for all possible k and h ; k < h; di¤erent from i; and so on

up to X(lj) for all possible j di¤erent from i: Given the equations obtained in this way,

we apply the following operation:

(n� 1)X(L�i)�
n� 1
2

X
k 6=i

X(L�ik)� ::::� (�1)n�1
n� 1
n� 1

X
j 6=i

X(lj): (2.16)

By anonymity we know that for any vector such that l�i = l�j ; Qi(l�i) = Qj(l�j):

Thus, applying anonymity to the result of the above operation we get that:

Qi(l�i) = (n� 1)X(L�i)�
n� 1
2

X
k 6=i

X(L�ik)� ::::� (�1)n�1
X
j 6=i

X(lj): (2.17)
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Since xi(l) = X(L) � Qi(l�i); the sharing rule is the incremental sharing rule as we

wanted to prove.

Consider now the existence of a Nash equilibrium associated with the incremental shar-

ing rule. This is proved by noting that, under the conditions stated below, each agent,

say i, maximizes a concave function over the incremental sharing rule that is concave

in the labor supplied by i. Thus the Best Reply is convex-valued and upper-hemi-

continuous. Thus a standard �xed point argument shows the existence of a Nash equi-

librium. Finally, notice that the allocation yielded by Nash equilibrium is e¢ cient

because the incremental sharing rule equalizes social and private gains as in equation

(2.6). Clearly, this sharing rule is anonymous.

Finally, we investigate the implications of relaxing anonymity. We assume instead

that the sharing rule can be written as a function of the sum of the contributions or

it yields zero consumption when the corresponding labor contribution is zero. Most of

sharing rules considered in the literature ful�ll, at least, one of these two properties (see,

e.g. Moulin [1987], P�ngsten [1991] and Roemer and Silvestre [1993]).

Proposition 1. Assume that the sharing rule can be written as xi = xi(li;
Pn
j=1 lj); or

it is such that xi(0; l�i) = 0: Under Assumption D, if Nash equilibrium yields e¢ cient

allocations in any U 2 E , the production function displays constant returns to scale.

Proof. Case 1. Let us consider �rst the case xi = xi(li;
Pn
j=1 lj): Since the production

function depends on the sum of inputs; Qi(0; l�i) = Qi(
P
j 6=i lj): For any possible vector

l such that
Pn
j=1 lj � �l; consider another vector such that all components are zero except

one (let us say i) and this component is the sum of all components in l: Then, equation

(2.9) implies that:

(n� 1)X(L) =
X
j 6=i

Qj(L): (2.18)
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Repeating the argument but considering that the non-zero component is k,

(n� 1)X(L) =
X
j 6=k

Qj(L): (2.19)

Subtracting both equations we get that

Qi(L) = Qk(L): (2.20)

Since the above equation is true for any i and k, from (2.18),

(n� 1)X(L) = (n� 1)Qk(L); (2.21)

which implies Qk(L) = X(L) for all k and L. Given l such that
Pn
j=1 lj � �l; consider

another vector with the �rst component equal to l1, the second component equal toP
j 6=1 lj and any other component equal to zero. Equation (2.9) now reads

(n� 1)X(
nX
j=1

lj) = X(
X
j 6=1

lj) +X(l1) + (n� 2)X(
nX
j=1

lj); (2.22)

which implies that

X(
nX
j=1

lj) = X(
X
j 6=1

lj) +X(l1): (2.23)

Repeating the argument to X(
P
j 6=1 lj) and so on, we get that

X(
nX
j=1

lj) =
nX
j=1

X(lj); for all l such that
nX
j=1

lj � �l: (2.24)

This is a Cauchy equation whose solutions are linear (Aczel (1966), chapter 2). Thus,

the production function displays constant returns to scale for all l such that
Pn
j=1 lj � �l.

By Theorem 1 the production function is a polynomial of degree n�1: Combining both

results, the production function displays constant returns to scale in the whole domain.

Case 2. If the sharing rule is such that xi(0; l�i) = 0; we have that xi(0; l�i) = 0 =

X(L�i)�Qi(l�i): Thus, Qi(l�i) = X(L�i) for all i and (2.9) reads:

(n� 1)X(
nX
j=1

lj) �
nX
j=1

X(L�j): (2.25)
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Let us see that equation (2.25) implies that

X(

nX
j=1

lj) =

nX
j=1

X(lj); (2.26)

which is a Cauchy�s equation whose solutions are linear (see Aczel 1966, chapter 2 for a

discussion). We prove the above relation by induction on the number of zero components

in a vector l: Let us consider a vector l such that all components but two are zero. Thus,

(n� 1)X(li + lj) = X(li) +X(lj) + (n� 2)X(li + lj); thus

X(li + lj) = X(li) +X(lj):

Suppose that the relation is true for all vectors l such that all components but one are

di¤erent from zero. Then, applying the induction hypothesis to equation (2.25),

(n� 1)X(
nX
j=1

lj) =
nX
j=1

X(l�j) = (n� 1)
nX
j=1

X(lj);

as we wanted to prove.

Proposition 1 implies that the result obtained by Sen is an artifact of his assumption

that all agents are identical. In his case our Assumption D fails because Ri(l�i) is

just a point or the empty set. We notice that under constant returns to scale, there

is a dominant strategy contribution mechanism achieving e¢ ciency, namely xi = li

(wlog we assumed that X(L) = L). Thus, under constant returns, implementation of

e¢ cient allocations by means of a contribution mechanism is possible in a more robust

equilibrium concept, namely dominant strategies. This �nding is not robust, though,

because it does not hold under decreasing returns to scale, see Leroux (2004). When

the inputs are owned collectively, the problem of implementing in dominant strategies

e¢ cient allocations under constant returns to scale is far from trivial, see Maniquet and

Sprumont (1999).
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3. Final Remarks

In this paper we have studied the problem of �nding sharing rules whose Nash equilib-

rium yield e¢ cient allocations. We found that this is only possible when the production

function is a polynomial of, at most, degree n�1. We also show that the only anonymous

sharing rule doing this job is the incremental sharing rule. Finally, we have shown that,

for a large class of sharing rules, e¢ ciency and Nash equilibrium are only compatible

under constant returns to scale, a case in which e¢ cient allocations can be achieved by

a strategy-proof mechanism.

To end up the paper, we remark here some properties of the incremental sharing

rule.

Firstly we recall that the consumption yielded by Sen´ sharing rule is between those

yielded by the proportional and the egalitarian sharing rules. This property does not

hold for the incremental sharing rule. However it is very easy to see that a related

property holds for this sharing rule, namely, that the increase in consumption resulting

from an increase in i´s labor in the incremental sharing rule (2.11) is between those

yielded by the proportional and the egalitarian sharing rules.

Secondly, it can be shown that, in some cases, the incremental sharing rule yields

nonnegative shares: For instance if n = 2 because in this case the production function

is linear. When n > 2 this is also the case when the production function is an increasing

and concave polynomial whose unique positive coe¢ cient is the corresponding to L; or

when n > 3 and all but the coe¢ cient of L and L2 are positive. The proofs of these two

last results are delegated to the Appendix.

15



4. Appendix.

Lemma 1. Let

Sn = �(n� 2) +
n�2X
k=m

(�1)n�k (n� 1)
n� k

�
n�m� 1
k �m

�
:

Then, Sn = �m+1
n�m :

Proof. Notice �rst that

1

n� k

�
n�m� 1
k �m

�
=

1

n�m

�
n�m
n� k

�
; and

n�2X
k=m

(�1)n�k
�
n�m
n� k

�
=

n�mX
k=2

(�1)k
�
n�m
k

�
:

Thus,

Sn = �(n� 2) +
(n� 1)
(n�m)

n�mX
k=2

(�1)k
�
n�m
k

�
:

By the Newton�s binomial we know that

0 = (1 + (�1))n�m =
n�mX
k=0

(�1)k
�
n�m
k

�
:

Thus,

Sn = �(n� 2) +
(n� 1)
(n�m)(�1 + n�m) =

�m+ 1
n�m ;

as we wanted to prove.

Proposition 2. Let n � 3; and let X(L) = an�1Ln�1 + an�2Ln�2 + :::::+ a2L2 + a1L

an increasing and concave polynomial in [0; n�l] with at � 0 for all t 2 f2; :::; n � 1g:

Then, xIi (l) � 0 for all i:

Proof. Since xIi (l) is increasing in li (recall that x
I
i (l) = X(L)�Qi(l�i)), to prove the

proposition it is enough to show that xIi (0; l�i) � 0: Without lost of generality let us

16



consider i = n: From (2.11) we know that

xIn(0; l�n) = �(n� 2)X(L�n) +
n� 1
2

n�1X
k=1

X(L�nk) + ::::+ (�1)n�1
n�1X
j=1

X(lj): (4.1)

Let Xt(L) = atLt; 1 � t � n� 1; and let us show that for all t 2 f1; ::; n� 1g;

�(n� 2)Xt(L�n) +
n� 1
2

n�1X
k=1

Xt(L�nk) + ::::+ (�1)n�1
n�1X
j=1

Xt(lj) � 0: (4.2)

Notice �rst that, for a given set of m components, 1 � m � n � 1, without loss of

generality, let us call them l1; :::; lm,

Xt(l1 + ::+ lm) = at
X
t1;::;tm

t!

t1!:::tm!
lt11 l

t2
2 :::l

tm
m , (4.3)

where the sum is taken over all non negative integers t1; ::; tm such that t1+ :::+ tm = t:

Thus, expression (4.2) can be rewritten as an expression with terms of the form lt11 l
t2
2 :::l

tm
m

with 1 � m � t, th > 0 for all h 2 f1; :::;mg and t1 + ::: + tm = t: Let us see that all

the coe¢ cients of such terms are positive. Fix m; and t1; :::; tm all positive and such

that t1+ :::+ tm = t: For each of the terms involving the sum of k components (k � m)

in expression (4.2), lt11 l
t2
2 :::l

tm
m appears as many times as the number of combinations of

(n�m� 1) elements taken (k �m) at a time. Thus, the coe¢ cient of lt11 l
t2
2 :::l

tm
m is:

at
t!

t1!:::tm!

"
�(n� 2) +

n�2X
k=m

(�1)n�k (n� 1)
(n� k)

�
n�m� 1
k �m

�#
: (4.4)

As we have proved in Lemma 1,

�(n� 2) +
n�2X
k=m

(�1)n�k (n� 1)
n� k

�
n�m� 1
k �m

�
=
�m+ 1
n�m : (4.5)

Since at � 0 for all t 2 f2; :::; n�1g the coe¢ cient of lt11 l
t2
2 :::l

tm
m is non negative. Therefore

expression (4.2) is non negative for all t 2 f2; ::; n � 1g: For t = 1; a1 is positive and

17



su¢ ciently large to guarantee that the polynomial is increasing, but in this case we only

have terms of the form tj , and all the coe¢ cients of these terms are zero (since m = 1).

Thus, expression (4.2) is non negative for all t as we wanted to prove.

Lemma 2. For all t; 3 � t � n� 1; and for all m; 2 � m � n� 1;

�m+ 1
n�m +

1

(n� 2)(
n

n� 1)
t�2m(m� 1)

2
� 0: (4.6)

Proof. Notice �rst that in order to prove the statement it is enough to show that for

all m; 2 � m � t;

�1 + 1

(n� 2)(
n

n� 1)
t�2m(n�m)

2
� 0: (4.7)

Clearly, for m = 2; the statement is true. Notice that m(n � m) as a function of m

extended to the real numbers is concave in m;thus, the minimum of this function is

reached in m = 2 or m = t: Notice that m(n �m) gets the same value for m = 2 and

for m = n � 2: Therefore, if t � n � 2; for all 2 � m � t; m(n �m) � 2(n � 2): Thus,

the expression in (4.7) is positive. If t = n� 1; the minimum is obtained in m = t: Let

us show that also in this case the statement of the Lemma holds, that is:

�1 + 1

(n� 2)(
n

n� 1)
n�3 (n� 1)

2
� 0; or equivalently, (4.8)

(n� 1)
(n� 2)(

n

n� 1)
n�3 � 2: (4.9)

Let an =
(n�1)
(n�2)(

n
n�1)

n�3 , bn =
(n�1)
(n�2)

�
n�1
n

�2
and cn = ( n

n�1)
n�1 . Notice that an = bncn:

The sequence cn is a well studied sequence which is increasing and converges to the

number e; and it is easy to prove that the sequence bn is increasing in n for all n � 4:

Thus, an is increasing in n and since a4 = 2; an � 2 for all n � 4:

Proposition 3. Let n � 4; and let X(L) = an�1Ln�1 + an�2Ln�2 + :::::+ a2L2 + a1L

an increasing and concave polynomial in [0; n�l] with at � 0 for all t 2 f3; :::; n � 1g:

Then, xIi (l) � 0 for all i:
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Proof. Notice �rst that the proof of Proposition 2 can be reproduced here up to (4.5).

From expressions (4.4), and (4.5) we know that for a given t; 1 � t � n� 1; for a �xed

m, 1 � m � t; and for t1; :::; tm all positive and such that t1+ :::+ tm = t, the coe¢ cient

of terms of the form lt11 l
t2
2 :::l

tm
m is given by

at
t!

t1!:::tm!
(
�m+ 1
n�m ): (4.10)

For m = 1; the coe¢ cient is zero. So we just �x attention to m � 2: For t = 2; we

only have terms of the form ljlk with coe¢ cient � 2
(n�2)a2: Thus, expression (4.2) is non

positive for all t 2 f3; ::; n�1g since at � 0; it is positive for t = 2 since a2 < 0; and it is

cero for t = 1: However, let us see that (4.1) is positive. By concavity of the polynomial,

2a2 � �
n�1X
t=3

t(t� 1)atLt�2 for all L 2 [0; n�l]: (4.11)

In particular, (4.11) holds for L = n
n�1(

Pn�1
j=1 lj): Thus, for all possible combinations of

ljlk;

� 2

(n� 2)a2ljlk �
1

(n� 2)

n�1X
t=3

t(t� 1)at(
n

n� 1)
t�2ljlk(

n�1X
j=1

lj)
t�2: (4.12)

For a given t; 3 � t � n � 1; for a �xed m, 2 � m � t; and for t1; :::; tm all positive

and such that t1 + ::: + tm = t, the term lt11 l
t2
2 :::l

tm
m appears in all the inequalities in

(4.12) involving all possible order pairs ljlk among (l1; :::; lm): Thus, the coe¢ cient of

lt11 l
t2
2 :::l

tm
m that is obtained from those inequalities is:

X
Tmjk

1

(n� 2)(
n

n� 1)
t�2t(t� 1)at

(t� 2)!
t1!::(tj � 1)!::(tk � 1)!:::tm!

; (4.13)

where the sum is taken over all possible pairs of indexes in the set Tmjk = f(j; k)=j < k;

and j; k 2 f1; :::;mgg: Notice that expression (4.13) can be rewritten as:

X
Tmjk

1

(n� 2)(
n

n� 1)
t�2at

t!tjtk
t1!::tj !::tk!:::tm!

: (4.14)
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Since tjtk � 1; and the cardinality of the set Tmjk is equal to the combinations of m

elements taken two at a time, expression (4.14) is bigger than

1

(n� 2)(
n

n� 1)
t�2at

t!

t1!::tj !::tk!:::tm!

m(m� 1)
2

: (4.15)

Thus, combining (4.10) and (4.15), we get that the coe¢ cient of lt11 l
t2
2 :::l

tm
m is

at
t!

t1!:::tm!

�
�m+ 1
n�m +

1

(n� 2)(
n

n� 1)
t�2m(m� 1)

2

�
: (4.16)

As we have shown in Lemma 2, (4.16) is positive for all m; 2 � m � t; 3 � t � n � 1;

which implies that (4.1) is positive as we wanted to prove.
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