GAME THEORY David Pérez-Castrillo

Problem Set 2

(to be returned on Thursday, September 21th)

EXERCISE 1. (1.3 F&T (a)) (*only part (a)!*) (Nash demand game) EXERCISE 2. (1.7 F&T) (public good) EXERCISE 3. (1.12 F&T) EXERCISE 4. (8.C.4 M-C&W&G)

EXERCISE 5. Find the set of rationalizable actions of each player in the following two-player game:

	<i>b</i> 1	<i>b</i> 2	<i>b</i> 3	<i>b</i> 4
<i>a</i> 1	0,7	2,5	7,0	0,1
<i>a</i> 2	5,2	3,3	5,2	0,1
<i>a</i> 3	7,0	2,5	0,7	0,1
<i>a</i> 4	0,0	0,-2	0,0	10,-1

EXERCISE 6. Consider a variant of EXERCISE 6 in Problem set 1 in which contributions are restricted to be nonnegative. Show the following:

- (a) Any contribution of more than $w_i/2$ is strictly dominated for player *i*.
- (b) If n = 3 and $w_1 = w_2 = w_3$ then every contribution of at most w/2 is rationalizable.
- (c) If n = 3 and $w_1 = w_2 < (1/3)w_3$ then the unique strategy of player 3 that survives iterated deletion of strictly dominated strategies is the one in which his contribution is $w_3/2$, and players 1 and 2 contribute 0.

EXERCISE 7. Let us say that a complete information game in strategic form $\Gamma = (N, (S_i)_{i \in N}, (u_i)_{i \in N})$ is *perfectly competitive* if $N = \{1, 2\}$, and for every $s, s' \in S$, $u_1(s) \ge u_1(s')$ if and only if $u_1(s') \ge u_1(s)$. Prove that if Γ is perfectly competitive, then:

- (a) For every mixed strategies σ and σ' , $u_1(\sigma) \ge u_1(\sigma')$ if and only if $u_1(\sigma') \ge u_1(\sigma)$.
- (b) If σ and σ' are both Nash equilibria, then $u_i(\sigma) = u_i(\sigma')$ for i = 1, 2.
- (c) If σ and σ' are both Nash equilibria, then (σ_1, σ'_2) and (σ'_1, σ_2) are also NE.